УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «8» ноября 2021 г. № 2477

Лист № 1 Всего листов 8

Регистрационный № 62156-15

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Насосной станции № 1 Новогорьковской ТЭЦ

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Насосной станции № 1 Новогорьковской ТЭЦ (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень – измерительно-информационный комплекс (ИИК) включает в себя измерительные трансформаторы напряжения (далее по тексту — ТН), измерительные трансформаторы тока (далее по тексту — ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту Сч и/или счетчики) и вторичные измерительные цепи.

Второй уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя локальное устройство сбора и передачи данных (УСПД), линии связи сбора данных со счетчиков, аппаратуру передачи данных внутренних каналов связи, автоматизированное рабочее место (АРМ) оператора и специализированное программное обеспечение (ПО).

Третий уровень — информационно-вычислительный комплекс (ИВК), включающий в себя центральное устройство сбора и передачи данных, сервер базы данных (сервер БД), устройство синхронизации системного времени УССВ-2, аппаратуру передачи данных внутренних и внешних каналов связи, АРМ персонала и специализированное ПО, установленное в Центре сбора и обработки информации (ЦСОИ) АИИС КУЭ.

Устройства второго уровня входят в состав АИИС КУЭ Новогорьковской ТЭЦ Филиала «Нижегородский» ПАО «Т Плюс» (Госреестр № 62230-15).

Устройства третьего уровня входят в состав АИИС КУЭ СормовскойТЭЦ Филиала «Нижегородский» ПАО «Т Плюс» (Госреестр № 62231-15).

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (не реже 1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);
 - передача журналов событий счетчиков в базу данных ИВК.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), созданной на основе устройства синхронизации системного времени УССВ-2, включающее в себя приемник сигналов точного времени от спутников глобальной системы позиционирования (ГЛОНАСС). Время УСПД уровня ИВК синхронизировано со временем устройства синхронизации системного времени, сличение осуществляется каждые 3 минут, корректировка времени УСПД уровня ИВК происходит при расхождении со временем УССВ более чем на ± 1 с. УСПД уровня ИВК осуществляет коррекцию времени сервера и УСПД уровня ИВКЭ. Сличение времени УСПД уровня ИВКЭ со временем УСПД уровня ИВК, выполняется не реже чем 1 раз в 30 мин при сеансе связи УСПД уровня ИВК с УСПД уровня ИВКЭ, и корректировка времени ОСПД уровня ИВК и УСПД уровня ИВКЭ более чем на ± 1 с. УСПД уровня ИВКЭ осуществляет коррекцию времени счетчиков. Сличение времени счетчиков со временем УСПД уровня ИВКЭ, выполняется не реже чем 1 раз в 30 мин при сеансе связи УСПД уровня ИВКЭ со счетчиками, и корректировка времени осуществляется УСПД уровня ИВКЭ автоматически при обнаружении рассогласования времени осуществляется УСПД уровня ИВКЭ автоматически при обнаружении рассогласования времени УСПД уровня ИВКЭ и счетчиков более чем на ± 1 с.

Факты коррекции шкал времени часов компонентов АИИС КУЭ регистрируются в журналах событий счетчика, УСПД, сервера.

Ход часов компонентов АИИС КУЭ не превышает ± 5 с/сут.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер указывается в паспорте-формуляре на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) Насосной станции № 1 Новогорьковской ТЭЦ.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	Не ниже 12.1
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора	MD5

Метрологические и технические характеристики

Состав измерительных каналов (ИК) АИИС КУЭ приведен в таблице 2. Метрологические характеристики АИИС КУЭ приведены в таблицах 3 и 4. Основные технические характеристики ИК АИИС КУЭ приведены в таблице 5.

Таблица 2 – Состав ИК АИИС КУЭ

	Состав ИК АИИС КУЭ								
№ ИК	Наименование ИК	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	УСПД (ИВК)	УСПД (ИВКЭ)	YCCB	Сервер	Вид энергии
1	2	3	4	5	6	7	8	9	10
1	ТП-572 НСТ (Теплонасосная), РУ-6 кВ, яч. 1, ТСН-1	ТПЛ кл.т 0,5S Ктт = 20/5 Рег. № 47958-11	НАМИТ-10 кл.т 0,5 Ктн = 6000/100	Альфа А1800 кл.т 0,5Ѕ/1,0 Рег. № 31857-11		7 Per. № 7 Per. № 2 Per. № 2			Активная Реактивная
2	ТП-572 НСТ (Теплонасосная), РУ-6 кВ, яч. 2,	ТПЛ кл.т 0,5S Ктт = 20/5 Рег. № 47958-11	НАМИТ-10 кл.т 0,5 Ктн = 6000/100	Альфа А1800 кл.т 0,5S/1,0 Рег. № 31857-11	41907-09		54074-13	7	Активная Реактивная
3	ТП-572 НСТ (Теплонасосная), РУ-6 кВ, яч. 3, фидер 627 ввод от ПС «Кстовская-Аварийная»	ТПОЛ кл.т 0,5S Ктт = 600/5 Рег. № 47958-11	НАМИТ-10 кл.т 0,5 Ктн = 6000/100 Рег. № 16687-13	Альфа А1800 кл.т 0,5S/1,0 Рег. № 31857-11	RTU-327 Per. No		Per. No		Активная Реактивная
4	ТП-572 НСТ (Теплонасосная), РУ-6 кВ, яч. 4, фидер 604 ввод от ПС «Кудьма»	ТПОЛ кл.т 0,5S Ктт = 600/5 Рег. № 47958-11	НАМИТ-10 кл.т 0,5 Ктн = 6000/100 Рег. № 16687-13	Альфа А1800 кл.т 0,5Ѕ/1,0 Рег. № 31857-11	I				Активная Реактивная

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10						
5	ТП-572 НСТ (Теплонасосная), РУ-6 кВ, яч. 20, ввод резервного питания от ПС «Фильтровальная»	ТПОЛ кл.т 0,5S Ктт = 150/5 Рег. № 47958-11	НАМИТ-10 кл.т 0,5 Ктн = 6000/100 Рег. № 16687-13	1Per No 31x3/-11	© 41907-09				9	41907-09		54074-	<u>o</u> 54074-13	0 Gen10	Активная Реактивная
6	ТП-572 НСТ (Теплонасосная), РУ- 6 кВ, ТСН-3 0,4 кВ	ТШП кл.т 0,5S Ктт = 150/5 Рег. № 47957-11	-	Альфа А1800 кл.т 0,5Ѕ/1,0 Рег. № 31857-11	-327 Per. M	Рег.	2 Per.	Proliant DL360	Активная Реактивная						
7	Будка управления коммуникациями № 1, 0,4 кВ	ТОП кл.т 0,5S Ктт = 75/5 Рег. № 47959-11	-	Альфа А1800 кл.т 0,5S/1,0 Рег. № 31857-11	RTU	RTU	YCC	Pro	Активная Реактивная						

Примечания

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение метрологических характеристик.
 - 2 Допускается замена УСПД, УССВ на аналогичные утвержденных типов.
- 3 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 4 Допускается замена ПО на аналогичное, с версией не ниже указанной в описании типа средств измерений.
- 5 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия и мощность)

		Метрологические характеристики ИК							
	Диапазон тока		ицы осно		Границы относительной				
			осителы		погрешности измерений				
Номер ИК		ПО	грешнос	ТИ	в рабочих условиях				
_		измерений, $(\pm \delta)$, %			эксплуа	уатации, $(\pm \delta)$, %			
		cos φ=	cos φ =	cos φ =	cos φ =	cos φ=	cos φ =		
		1,0	0,8	0,5	1,0	0,8	0,5		
1	2	3	4	5	6	7	8		
	$I_{1_{\text{HOM}}} \le I_1 \le 1,2I_{1_{\text{HOM}}}$	1,0	1,4	2,3	1,7	2,2	2,9		
1 - 5	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	1,0	1,4	2,3	1,7	2,2	2,9		
(TT 0,5S; TH 0,5;	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,2	1,7	3,0	1,8	2,4	3,5		
Счетчик 0,5S)	$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	1,2	1,9	3,1	1,8	2,6	3,6		
	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	2,1	3,0	5,5	2,7	3,5	5,8		

Продолжение таблицы 3

1	2	3	4	5	6	7	8
	$I_{1\text{hom}} \le I_1 \le 1.2I_{1\text{hom}}$	0,8	1,1	1,9	1,6	2,1	2,6
6, 7	$0.2I_{_{1\text{HOM}}} \le I_{_1} < I_{_{1\text{HOM}}}$	0,8	1,1	1,9	1,6	2,1	2,6
(TT 0,5S; Счетчик	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	1,0	1,5	2,7	1,7	2,3	3,2
0,5S)	$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	1,0	1,7	2,8	1,7	2,5	3,3
	$0.01I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	2,0	2,9	5,4	2,6	3,4	5,6

Примечания

- 1 Характеристики погрешности ИК даны для измерений электрической энергии и средней мощности (получасовой).
- 2 Погрешность в рабочих условиях указана для $\cos \varphi = 1.0$; 0,8; 0,5 инд и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от 0 до плюс 40 °C.
- 3~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия и мощность)

мощнос	1ь)						
Метрологические характерист							
Номер ИК	Номер ИК Диапазон тока Границы относительной основной погрешности измерений, $(\pm \delta)$, %				Границы относительной погрешности измерений в рабочих условиях эксплуатации, $(\pm \delta)$, %		
		$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.8$	$\cos \varphi = 0.5$		
	$I_{1_{\rm HOM}} \le I_1 \le 1,2I_{1_{\rm HOM}}$	2,1	1,5	4,0	3,8		
1 - 5	$0.2I_{1_{\text{HOM}}} \le I_1 < I_{1_{\text{HOM}}}$	2,1	1,5	4,0	3,8		
(TT 0,5S; TH 0,5;	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	2,6	1,8	4,3	3,9		
Счетчик 1,0)	$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	2,9	2,1	4,5	4,1		
,	$0.02I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	4,6	3,0	5,8	4,5		
	$I_{\text{1}_{\text{1}_{\text{1}}\text{0}\text{0}\text{M}}} \le I_{1} \le 1,2I_{\text{1}_{\text{1}_{\text{1}}\text{0}\text{0}\text{M}}}$	1,8	1,4	3,9	3,7		
6, 7	$0.2I_{\text{1hom}} \le I_1 < I_{\text{1hom}}$	1,8	1,4	3,9	3,7		
(TT 0,5S; Счетчик	$0.1I_{1\text{HOM}} \le I_1 < 0.2I_{1\text{HOM}}$	2,4	1,6	4,2	3,8		
1,0)	$0.05I_{1\text{HOM}} \le I_1 < 0.1I_{1\text{HOM}}$	2,7	2,0	4,4	4,0		
	$0.02I_{1\text{HOM}} \le I_1 < 0.05I_{1\text{HOM}}$	4,5	2,9	5,7	4,5		

Примечания

- 1 Характеристики погрешности ИК даны для измерений электрической энергии и средней мощности (получасовой).
- 2 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$; 0,5 инд и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от 0 до плюс 40 °C.
- $3~{\rm B}$ качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95 .

Таблица 5 – Основные технические характеристики ИК АИИС КУЭ

Наименование характеристики	Значение
Количество измерительных каналов	7
Нормальные условия:	,
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 1 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности соsф	от 0,5 инд. до 0,8 емк.
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	01 -21 до -25
параметры сети:	
- напряжение, % от $U_{\text{ном}}$	от 90 до 110
- ток, % от I _{ном}	от 1 до 120
- частота, Гц	от 49,5 до 50,5
- коэффициент мощности соѕф	от 0,5 инд. до 0,8 емк.
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды для тт и тт, с температура окружающей среды в месте расположения счетчиков, °С	от 0 до +40
температура окружающей среды в месте расположения УСПД	от +15 до +25
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	,
электросчетчики Альфа А1800:	
- среднее время наработки на отказ, ч, не менее	120000
УСПД RTU-327:	
- среднее время наработки на отказ, ч, не менее	35000
VCCB-2:	
- среднее время наработки на отказ, ч, не менее	74500
сервер:	
- среднее время наработки на отказ, ч, не менее	70000
Глубина хранения информации	
электросчетчики:	
- тридцатиминутный профиль нагрузки, сут, не менее	300
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электроэнергии по каждому каналу и электроэнергии, потребленной за	
месяц, сут, не менее	45
ИВК:	
- результаты измерений, состояние объектов и средств измерений,	
лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

В журналах событий фиксируются факты:

журнал счетчика:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;
- несанкционированный доступ

Защищённость применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- электросчётчика;

- сервера;

защита на программном уровне информации при хранении, передаче, параметрировании:

- электросчётчика;
- УСПД;
- сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульный лист Паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформатор тока	ТПЛ	4
Трансформатор тока	ТПОЛ	6
Трансформатор тока	ТШП	3
Трансформатор тока	ТОП	3
Трансформатор напряжения	НАМИТ-10	2
Счётчик электрической энергии	Альфа А1800	7
многофункциональный	Альфа А1000	/
УСПД	RTU-327	2
Сервер	Proliant DL360 Gen10	1
Устройство синхронизация времени	УССВ-2	1
ПО	«АльфаЦЕНТР»	1
Паспорт-формуляр	СТПА.411711.НГ03.ФО	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии Насосной станции № 1 Новогорьковской ТЭЦ (АИИС КУЭ Насосной станции № 1 Новогорьковской ТЭЦ)», аттестованной ООО «АСЭ», аттестат аккредитации № RA.RU.312617 от 17.01.2019 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Насосной станции № 1 Новогорьковской ТЭЦ

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

Изготовитель

Публичное акционерное общество «Т Плюс» (ПАО «Т Плюс»)

ИНН 6315376946

Юридический адрес: 143421, Московская область, Красногорский р-н, автодорога «Балтия», территория бизнес-центр «Рига-Ленд», строение 3

Почтовый адрес: 603950, г. Нижний Новгород, ул. Алексеевская, д. 10/16, ГСП-62

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Юридический адрес:

119361, Москва, ул. Озерная, д. 46

Тел./факс: +7 (495) 437-55-77 / 437-56-66

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

В части вносимых изменений

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике»

Место нахождения: г. Владимир, ул. Тракторная, д. 7А

Адрес юридического лица: г. Владимир, ул. Юбилейная, д. 15

Регистрационный номер в реестре аккредитованных лиц: RA.RU.312617