УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии

от «17» мая 2022 г. № 1197

Регистрационный № 62904-15

Лист № 1 Всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефти № 443 на ПСП «Ухта»

Назначение средства измерений

Система измерений количества и показателей качества нефти № 443 на ПСП «Ухта» (далее – система) предназначена для измерений объемного расхода, массы и плотности нефти.

Описание средства измерений

Принцип действия системы основан на использовании косвенного метода динамических измерений массы нефти с помощью преобразователей объемного расхода. Выходные электрические сигналы преобразователей объемного расхода, температуры, давления, плотности, объемной доли воды в нефти поступают на соответствующие входы измерительновычислительного комплекса, который преобразует их и вычисляет массу нефти по реализованному в нем алгоритму.

Система представляет собой единичный экземпляр измерительной системы целевого назначения, спроектированной для конкретного объекта и состоящей из блока измерительных линий, блока измерений показателей качества нефти, стационарной трубопоршневой поверочной установки, системы сбора, обработки информации и управления и системы дренажа нефти. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной и эксплуатационной документацией на систему и ее компоненты.

Система состоит из двух рабочих и одной резервной измерительных линий.

В состав системы входят следующие средства измерений (с учетом средств измерений, находящихся на хранении):

- преобразователи расхода турбинные HTM, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 56812-14, модели HTM06 с Ду 150;
- преобразователи расхода жидкости турбинные HELIFLU TZ-N с Ду 150, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 15427-01 (далее ТПР);
- термопреобразователи сопротивления платиновые серии 65, типы зарегистрированы в Федеральном информационном фонде по обеспечению единства измерений под номерами 22257-01, 22257-05, в комплекте с преобразователями измерительными 644 к датчикам температуры, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 14683-00 и преобразователями измерительными 644, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 14683-04;
- преобразователи давления измерительные 3051, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 14061-99;

- денсиметры SARASOTA модификации FD960, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 19879-00 (далее ПП);
- влагомеры нефти поточные УДВН-1пм, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 14557-10;
- счетчик жидкости турбинный CRA/MRT 97, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 22214-01;
- расходомер-счетчик ультразвуковой OPTISONIC 3400, тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 57762-14;
- двунаправленная трубопоршневая поверочная установка для жидкостей фирмы «Daniel» Ду 16" (далее стационарная ТПУ), тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 20054-00;
- комплексы измерительно-вычислительные ИМЦ-07 (далее ИВК), тип зарегистрирован в Федеральном информационном фонде по обеспечению единства измерений под номером 53852-13, с автоматизированными рабочими местами (далее APM) оператора системы с программным обеспечением «ГКС расход НТ версия 3.0».
- В составе системы дополнительно сформированы вспомогательные измерительные каналы (далее ИК) плотности и объемного расхода, метрологические характеристики которых определяют комплектным методом.

Система обеспечивает выполнение следующих основных функций:

- автоматические измерения объема, объемного расхода и массы брутто нефти косвенным методом динамических измерений в диапазоне расхода, температуры, давления, плотности, объемной доли воды в нефти;
- автоматические измерения давления, температуры, плотности и объемной доли воды в нефти;
- автоматизированные вычисления массы нетто нефти, как разности массы брутто нефти и массы балласта, используя результаты измерений массовых долей воды, механических примесей и хлористых солей в аккредитованной испытательной химико-аналитической лаборатории;
- проведение контроля метрологических характеристик и поверки ТПР с применением стационарной ТПУ;
- автоматический и ручной отбор проб согласно ГОСТ 2517–2012 «Нефть и нефтепродукты. Методы отбора проб»;
- автоматический контроль параметров измеряемой среды, их индикацию и сигнализацию нарушений установленных границ;
 - защиту информации от несанкционированного доступа программными средствами.

Заводской номер системы нанесен на маркировочную табличку, установленную на площадке системы.

Знак поверки наносится на свидетельство о поверке системы. Пломбирование системы не предусмотрено. Пломбирование СИ из состава выделенных ИК системы проводится в соответствии с требованиями МИ 3002–2006 «Рекомендация. Государственная система обеспечения единства измерений. Правила пломбирования и клеймения средств измерений и оборудования, применяемых в составе систем измерений количества и показателей качества нефти и поверочных установок».

Программное обеспечение

Программное обеспечение (далее - Π O) системы обеспечивает реализацию функций системы. Π O системы разделено на метрологически значимую и метрологически незначимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию Π O системы. Вторая хранит все библиотеки, процедуры и подпрограммы взаимодействия с операционной системой и периферийными устройствами (несвязанные с измерениями параметров технологического процесса). Идентификационные данные Π O системы указаны в таблице 1.

Уровень защиты ПО «средний» в соответствии с Р 50.2.077–2014 «ГСИ. Испытания средств измерений в целях утверждения типа. Проверка защиты программного обеспечения».

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем разделения, идентификации, защиты от несанкционированного доступа.

Таблица 1 – Идентификационные данные ПО

таолица т – идентификационные данные то		
Идентификационные данные (признаки)	Значение	
	АРМ оператора «ГКС	ИВК
	расход НТ версия 3.0»	(основной и резервный)
Идентификационное наименование ПО	metrological_char.jar	EMC07.exe
Номер версии (идентификационный номер) ПО	3.0	PX 7000.01.01
Цифровой идентификатор ПО*	15f95747	7A70F3CC
Другие идентификационные данные	_	_

 $^{^*}$ Значение цифрового идентификатора ПО представлено в шестнадцатеричной системе счисления в виде буквенно-цифрового кода. Значимым является номинал и последовательность расположения цифр и букв, регистр букв при этом значения не имеет.

Идентификация ПО системы осуществляется путем отображения на мониторе ИВК и APM оператора системы структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы, представляет собой хэш-сумму (контрольную сумму) по значимым частям.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров, путем ввода логина и пароля, ведения журнала событий, доступного только для чтения. Доступ к метрологически значимой части ПО системы для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записывается в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования.

Метрологические и технические характеристики

Основные метрологические и технические характеристики системы, физико-химические показатели измеряемой среды и метрологические характеристики выделенных ИК приведены в таблицах 2–4.

Таблица 2 – Метрологические характеристики системы

	Наименовані	ие характеристики		Значение
Диапазон и	змерений объемі	ного расхода, м ³ /ч		от 221 до 1000
Пределы	допускаемой	относительной	погрешности	
измерений	массы брутто не	р ти, %		$\pm 0,\!25$
Пределы	допускаемой	относительной	погрешности	
измерений	массы нетто неф	ти, %		± 0.35

Таблица 3 – Метрологические характеристики ИК

таолица з тистрологи теск	Состав ИК			Периони
Наименование ИК	Первичный измерительный преобразователь	Вторичная часть	Диапазон измерений	Пределы допускаемой погрешности ИК
ИК плотности	ПП	ИВК	от 800 до 900 кг/м ³	Δ : ±0,3 kγ/m ³
ИК объемного расхода по ИЛ № 1	ТПР	ИВК	от 299 до 406 м ³ /ч	δ: ±0,15 %
ИК объемного расхода по ИЛ № 3	11117	NIDK	от 233 до 398 м ³ /ч	0. ±0,13 %

Примечание – Приняты следующие обозначения:

Таблица 4 – Основные технические характеристики системы

Наименование характеристики	Значение характеристики
	Нефть по ГОСТ Р 51858-2002
Измеряемая среда	«Нефть. Общие технические
	условия»
Количество измерительных линий, шт.	3 (2 рабочие, 1 резервная)
Избыточное давление измеряемой среды на входе блока	
измерительных линий, МПа	от 0,25 до 1,2
Температура измеряемой среды, °С	от 5 до 40
Плотность измеряемой среды, кг/м ³	от 840 до 890
Вязкость кинематическая измеряемой среды в рабочем диапазоне температуры, мм ² /с (сСт)	от 6 до 115
Массовая доля воды, %, не более	0,5
Массовая доля механических примесей, %, не более	0,05
Массовая концентрация хлористых солей, мг/дм ³ , не более	900
Массовая доля сероводорода, млн-1 (ррт), не более	100
Массовая доля серы, %, не более	1,8
Массовая доля парафина, %, не более	6,0
Давление насыщенных паров, кПа (мм рт.ст.), не более	66,7 (500)
Параметры электрического питания:	
 напряжение переменного тока, В 	$220_{-33}^{+22} / 380_{-57}^{+38}$
– частота переменного тока, Гц	50±1
Содержание свободного газа, %	не допускается

 $[\]Delta$ – пределы допускаемой абсолютной погрешности измерений, кг/м³;

 $[\]delta$ – пределы допускаемой относительной погрешности измерений, %.

Режим работы системы	непрерывный
----------------------	-------------

Знак утверждения типа

наносится справа в нижней части титульного листа инструкции по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность системы приведена в таблице 5.

Таблица 5 – Комплектность системы

Наименование	Количество
Система измерений количества и показателей качества нефти № 443	
на ПСП «Ухта», заводской № 443	1 шт.
Инструкция по эксплуатации	1 экз.

Сведения о методиках (методах) измерений

«Масса нефти. Методика измерений системой измерений количества и показателей качества нефти № 443 ПСП «Ухта» Ухтинского РНУ АО «Транснефть – Север», свидетельство об аттестации методики измерений № 254-RA.RU.312546-2021 от 25 августа 2021 г.

Нормативные документы, устанавливающие требования к средству измерений

Постановление Правительства Российской Федерации от 16 ноября 2020 года № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений»

Приказ Росстандарта от 7 февраля 2018 года № 256 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости»

Приказ Росстандарта от 1 ноября 2019 года № 2603 «Об утверждении Государственной поверочной схемы для средств измерений плотности»

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «ГКС» (ООО НПП «ГКС»)

ИНН 1655107067

Адрес: 420111, Республика Татарстан, г. Казань, ул. Московская, д. 35

Юридический адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50

Телефон (факс): (843) 221-70-00, (843) 221-70-01

E-mail: www.nppgks.com

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии» (ФГУП «ВНИИР»)

Адрес: Россия, РТ, 420088, г. Казань, ул. 2-я Азинская, 7 «а»

Телефон (факс): (843) 272-70-62, (843) 272-00-32

Web-сайт: www.vniir.org E-mail: office@vniir.org

Аттестат аккредитации Φ ГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа RA.RU.310592 от 24.02.2015

В части вносимых изменений:

Общество с ограниченной ответственностью Центр Метрологии «СТП» (ООО ЦМ «СТП»)

Адрес: 420107, Российская Федерация, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Уникальный номер записи об аккредитации в реестре аккредитованных лиц ООО ЦМ «СТП» по проведению испытаний средств измерений в целях утверждения типа N RA.RU.311229 от 30.07.2015 г.