ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2 (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, контроля ее передачи и потребления за установленные интервалы времени отдельными технологическими объектами, а также сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в сутки, 1 раз в месяц) и /или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин, сутки, месяц);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача в организации-участники оптового рынка электроэнергии результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данным о состоянии средств измерений со стороны сервера;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, электронных ключей, программных паролей);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация и коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (далее - ТТ) класса точности 0,2S по ГОСТ 7746-2001, трансформаторы напряжения (далее - ТН) класса точности 0,2 по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа Альфа А1800 класса точности 0,2S по ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии и класса точности 0,5 по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2 и 3.

2-й уровень - измерительно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных СИКОН С70 (далее - УСПД), каналообразующую аппаратуру.

3-й уровень - информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, устройство синхронизации времени на базе GPS-приемника типа УСВ-2 (далее УСВ-2), сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (далее - ПО) «Пирамида 2000»

Измерительные каналы (далее - ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициента трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам.

На верхнем - третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов.

Сервер сбора данных обеспечивает сбор измерительной информации с УСПД. В системе предусмотрен доступ к базе данных сервера со стороны APM и информационное взаимодействие с организациями-участниками оптового рынка электроэнергии.

Система выполняет непрерывное измерение приращений активной и реактивной электрической энергии, измерение текущего времени и коррекцию хода часов компонентов системы, а также сбор результатов и построение графиков получасовых нагрузок, необходимых для организации рационального энергопотребления.

Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК, ИВКЭ и ИВК. Для синхронизации шкалы времени в состав ИВК входит устройство синхронизации системного времени типа УСВ-2. УСВ-2 синхронизирует часы по точного времени ОТ спутников глобальной системы позиционирования сигналам (GPS/ГЛОНАСС). УСВ-2обеспечивает автоматическую коррекцию часов сервера БД. В случае выхода из строя устройства УСВ-2 синхронизация времени выполняется по протоколу NTP от тайм-сервера ФГУП «ВНИИФТРИ», открытого подключенного К Государственному первичному эталону времени. Переключение на резервный канал синхронизации времени производится вручную.

Сервер БД уровня ИВК, периодически, но не реже 1 раз в час, сравнивает свое время со временем УСВ-2, в случае расхождения, превышающие ± 1 с производит коррекцию в соответствии со временем УСВ-2. Коррекция часов УСПД осуществляется со стороны сервера АИИС КУЭ и проводится при расхождении часов УСПД и сервера АИИС КУЭ более чем на ± 0.5 с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 3 с.

Погрешность часов компонентов АИИС КУЭ не превышает ±5 с в сутки.

Журналы событий счетчика электроэнергии и УСПД отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» версии 3.0. Идентификационные данные программного обеспечения, установленного на сервере АИИС КУЭ, приведены в таблине 1.

ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

Таблица 1 - Метрологические значимые модули ПО

Taominga T Welponoth teekhe sha immile modyshi 110				
Идентификационные признаки	Значение			
Идентификационные наименования	CalcClients.dll; CalcLeakage.dll; CalcLosses.dll;			
модулей ПО	Metrology.dll; ParseBin.dll; ParseIEC.dll;			
	ParseModbus.dll; ParsePiramida.dll;			
	SynchroNSI.dll; VerifyTime.dll			
Номер версии (идентификационный номер) ПО	3.0			
	e55712d0b1b219065d63da949114dae4			
	b1959ff70be1eb17c83f7b0f6d4a132f			
	d79874d10fc2b156a0fdc27e1ca480ac			
	52e28d7b608799bb3ccea41b548d2c83			
Цифровой идентификатор ПО	6f557f885b737261328cd77805bd1ba7			
цифровой идентификатор по	48e73a9283d1e66494521f63d00b0d9f			
	c391d64271acf4055bb2a4d3fe1f8f48			
	ecf532935ca1a3fd3215049af1fd979f			
	530d9b0126f7cdc23ecd814c4eb7ca09			
	1ea5429b261fb0e2884f5b356a1d1e75			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающие в себя ПО «Пирамида 2000», внесены в Федеральный информационный фонд по обеспечению единства измерений (Рег. № 21906-11)

Предел допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3, нормированы с учетом ПО.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2 и 3.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

Порядковый номер	Наименование объекта и номер ИК	Измерительные компоненты			
		TT	ТН	Счётчик	УСПД
1	2	3	4	5	6
АО «Юго-Западная ТЭЦ»					
1	Юго-Западная ТЭЦ, вывод генератора Г-20 ИК № 4	BDG 072A1 Kл. т. 0,2S 8000/1 Зав. № 1VLT5114027791; Зав. № 1VLT5114027792; Зав. № 1VLT5114027793	TJC 6-G Кл. т. 0,2 10500:√3/100√3 Зав. № 1VLT5214006729; Зав. № 1VLT5214006730; Зав. № 1VLT5214006731	Альфа A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01286987	СИКОН С70 Зав. № 07427
2	Юго-Западная ТЭЦ, вывод генератора Г-21 ИК № 5	BDG 072A1 Kл. т. 0,2S 5000/1 Зав. № 1VLT5114028036; Зав. № 1VLT5114028037; Зав. № 1VLT5114028038	TJC 6-G Кл. т. 0,2 11000:√3/100√3 Зав. № 1VLT5214006714; Зав. № 1VLT5214006715; Зав. № 1VLT5214006716	Альфа A1802RALQ- P4GB-DW-4 Кл. т. 0,2S/0,5 Зав. № 01286995	СИКОН С70 Зав. № 07427

Продолжение таблицы 2

1	2	3	4	5	6
		BDG 072A1	TJC 6-G		
	Юго-Западная ТЭЦ,	Кл. т. 0,2S	Кл. т. 0,2	Альфа A1802RALQ-	
3	вывод генератора	5000/1	$11000:\sqrt{3}/100\sqrt{3}$	P4GB-DW-4	СИКОН С70
	Γ-22	Зав. № 1VLT5114028048;	Зав. № 1VLT5214006848;	Кл. т. 0,2S/0,5	Зав. № 07427
	ИК № 6	Зав. № 1VLT5114028050;	Зав. № 1VLT5214006849;	Зав. № 01287004	
		Зав. № 1VLT5114028051	Зав. № 1VLT5214006850		
		BDG 072A1	TJC 6-G		
	Юго-Западная ТЭЦ,	Кл. т. 0,2S	Кл. т. 0,2	Альфа A1802RALQ-	
4	вывод генератора	5000/1	$11000:\sqrt{3}/100\sqrt{3}$	P4GB-DW-4	СИКОН С70
4	Γ-23	Зав. № 1VLT5114028049;	Зав. № 1VLT5214006753;	Кл. т. 0,2S/0,5	Зав. № 07427
	ИК № 7	Зав. № 1VLT5114028052;	Зав. № 1VLT5214006754;	Зав. № 01287008	
		Зав. № 1VLT5114028053	Зав. № 1VLT5214006755		

Таблица 3 - Метрологические характеристики измерительных каналов АИИС КУЭ

	Наименование объекта и номер ИК		Метрологические характеристики ИК			
Порядковый номер		Вид электроэнергии	Основная погрешность, %	Погрешность в рабочих условиях, %		
	АО «Юго-Западная ТЭЦ»					
1	Юго-Западная ТЭЦ, вывод генератора Г-20	активная	±0,6	±1,5		
	ИК № 4	реактивная	±1,3	±2,5		
2	Юго-Западная ТЭЦ, вывод генератора	активная	±0,6	±1,5		
	Г-21 ИК № 5	реактивная	±1,3	±2,5		
3	Юго-Западная ТЭЦ, вывод генератора	активная	±0,6	±1,5		
	Г-22 ИК № 6	реактивная	±1,3	±2,5		
	Юго-Западная ТЭЦ, вывод генератора	активная	±0,6	±1,5		
4	Γ-23		1.0	2.5		
	ИК № 7	реактивная	±1,3	±2,5		

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
 - 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0,98 1,02) Uном; ток (1,0 1,2) Іном, частота $(50\pm0,15)$ Γ ц; \cos ј = 0,9 инд.;
- температура окружающей среды: ТТ и ТН от плюс 15 до плюс 35 °C; счетчиков от плюс 21 до плюс 25 °C; УСПД от плюс 10 до плюс 30 °C; ИВК от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
 - 4. Рабочие условия эксплуатации:
 - а) для ТТ и ТН:
- параметры сети: диапазон первичного напряжения (0.9 1.1) UH₁; диапазон силы первичного тока (0.02 1.2) IH₁; коэффициент мощности cosj (sinj) 0.5 1.0 (0.6 0.87); частота (50 ± 0.5) Γ ц;
 - относительная влажность воздуха (70±5) %;
 - температура окружающего воздуха от плюс 5 до плюс 35 °C.
 - б) для счетчиков электроэнергии:
- параметры сети: диапазон вторичного напряжения (0,9 1,1) UH₂; диапазон силы вторичного тока (0,01 1,2) IH₂; коэффициент мощности cosj (sinj) 0,5 1,0 (0,6 0,87); частота $(50\pm0,5)$ Γ Ц;
 - относительная влажность воздуха (40 60) %;
 - атмосферное давление (100±4) кПа;
 - температура окружающего воздуха от плюс 5 до плюс 35 °C;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.
 - в) для аппаратуры передачи и обработки данных:
 - параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
 - температура окружающего воздуха от плюс 10 до плюс 30 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.
- 5. Погрешность в рабочих условиях указана для $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 4 7 от плюс 5 до плюс 35 °C.
- 6. Допускается замена измерительных трансформаторов, счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 2, УСПД на однотипный утвержденного типа.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик Альфа A1802RALQ-P4GB-DW-4 среднее время наработки на отказ не менее T=120000 ч, среднее время восстановления работоспособности tв = 24 ч;
- УСПД СИКОН С70 среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t=12 ч;
- сервер среднее время наработки на отказ не менее T=70000 ч, среднее время восстановления работоспособности t = 1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера и УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью передачи электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - УСПД;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 45 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии, потребленной за месяц, по каждому каналу не менее 45 суток; сохранение информации при отключении питания не менее 10 лет;
- сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2 типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип	Рег. №	Количество, шт.	
Трансформатор тока	BDG 072A1	48214-11	12	
Трансформатор напряжения	TJC 6-G	49111-12	12	
Счётчик электрической	Альфа			
энергии	A1802RALQ-	31857-11	4	
многофункциональный	P4GB-DW-4			
Устройство сбора и передачи	СИКОН С70	28822-05	1	
данных	ement eve	20022 03	1	
Программное обеспечение	Пирамида 2000	-	1	
Методика поверки	1	-	1	
Формуляр	-	-	1	

Поверка

осуществляется по документу МП 64028-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2. Методика поверки», утвержденному ФГУП «ВНИИМС» в феврале 2016 г.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ $8.217-2003 \ \mbox{«}\Gamma \mbox{СИ.}$ Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- по МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений без отключения цепей»;
- по МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений без отключения цепей»;
- счетчиков Альфа A1802RALQ-P4GB-DW-4 по документу «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки ДЯИМ.411152.018 МП», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- УСПД СИКОН С70 по документу «Контроллеры сетевые индустриальный СИКОН С70. Методика поверки ВЛСТ 220.00.000 И1», согласованному с ГЦИ СИ ФГУП «ВНИИМС» в мае 2005 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04:
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100%, дискретность 0,1%.
- миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиска клейма поверителя.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2», аттестованной ФГУП «ВНИИМС», аттестат об аккредитации № 01.00225-2011 от 29.06.2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) Юго-Западная ТЭЦ (ПГУ-300) генерация Блок № 2

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «ПетроЭнергоцентр»

(ООО «ПетроЭнергоцентр»)

ИНН 7842345538

Юридический (почтовый) адрес: 191119, г. Санкт-Петербург, ул. Днепропетровская, д.33, лит.А

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Тел./факс: 8 (495) 437-55-77 / 437-56-66 E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев «____ » ______ 2016 г.

М.п.