ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Станции геолого-технологического контроля и оптимизации бурения ГЕОКОНТРОЛЬ

Назначение средства измерений

Станции геолого-технологического контроля и оптимизации бурения ГЕОКОНТРОЛЬ (далее - станции ГТИ) предназначены для измерения силы постоянного тока и напряжения постоянного (импульсного) тока для дальнейшего комплексного исследования (при подключении к внешним, не входящим в состав станций, датчикам) содержания, состава и свойств пластовых флюидов и горных пород в циркулирующей промывочной жидкости, а также характеристик и параметров технологических процессов на различных этапах строительства скважин с привязкой результатов исследований ко времени контролируемого технологического процесса и к разрезу исследуемой скважины.

Описание средства измерений

Принцип действия станций ГТИ основан на получении аналоговых сигналов от первичных измерительных преобразователей (датчиков), их преобразовании в цифровой код, обработке, измерении и выдаче унифицированного электрического выходного сигнала по ГОСТ 26.011-80, пропорционального входному сигналу.

Станции ГТИ обеспечивают выполнение следующих функций:

- преобразование аналоговых электрических сигналов унифицированных диапазонов в цифровые коды;
- взаимодействие с другими информационно-измерительными, управляющими и смежными системами и оборудованием объекта по проводным и волоконно-оптическим линиям связи;
- автоматическое, дистанционное и ручное управление технологическим оборудованием и исполнительными механизмами с выявлением аварийных ситуаций, реализацию функций противоаварийной защиты с управлением световой и звуковой сигнализацией;
 - отображение информации о ходе технологического процесса и состоянии оборудования;
- визуализацию результатов контроля параметров технологического процесса, формирование отчетных документов и хранение архивов данных;
- диагностику каналов связи оборудования с автоматическим включением резервного оборудования, сохранение настроек при отказе и отключении электропитания.

Станции ГТИ являются проектно-компонуемыми изделиями.

В состав станции ГТИ входит следующее оборудование:

- блоки аналоговых каналов (БАК);
- блок импульсных каналов (БИК);
- блок обработки датчика оборотов лебедки (БОДОЛ);
- блок обработки датчика веса (БДВ);
- блок суммарного газоанализатора (БСГ);
- блок питания и связи (БПС) между комплектом датчиков и рабочим местом оператора станции ГТИ;
 - комплект монитора бурильщика;
 - комплекс газового каротажа;
 - автоматизированное рабочее место (АРМ) оператора.

Аппаратура информационного обмена расположена в невзрывоопасных зонах. Связь с оборудованием и преобразователями, установленными во взрывоопасной зоне, осуществляется через искробезопасные цепи. Внутри станции ГТИ предусмотрен терморегулирование для поддержания нормальных условий, включающее в себя контроль температуры, систему вентиляции и систему обогрева.

Общий вид станции и автоматизированного рабочего места оператора с указанием мест пломбирования представлен на рисунке 1.

Характеристики физических величин, приведенных в таблицах 2 и 3 пропорциональны входным сигналам с первичных преобразователей (сила постоянного тока и напряжения постоянного (импульсного) тока) через коэффициент масштабного преобразования для каждого канала измерения станции ГТИ.

Рисунок 1 - Общий вид станции ГТИ и автоматизированного рабочего места оператора с указанием мест пломбирования и нанесения знака поверки

Программное обеспечение

Места

Станции ГТИ имеют встроенное программное обеспечение (ПО) и внешнее, устанавливаемое на персональный компьютер - ПО «DTCIS».

Встроенное ПО устанавливается в энергонезависимую память блоков из состава станции ГТИ в производственном цикле на заводе-изготовителе. Вклад микропрограмм в суммарную погрешность станции ГТИ незначителен, так как определяется погрешностью дискретизации (погрешностью АЦП), являющейся ничтожно малой по сравнению с погрешностью станции ГТИ.

Внешнее ПО «DTCIS» - программа, представляющая собой сервер данных, полученных от блоков обработки данных, и предоставляющая их по ОРС-стандарту. Внешнее ПО позволяет просматривать регистрируемую технологическую информацию на АРМ в любой системе единиц величин, дает возможность выдачи информации по протоколу WITS-0, передает данные на уровень управления, имеет возможность ведения нескольких экранных форм.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные внешнего ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные внешнего ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	DTCIS
Номер версии (идентификационный номер ПО)	не ниже v. 1.61
Цифровой идентификатор ПО	1

Метрологические и технические характеристики

Основные метрологические и технические характеристики станции приведены в таблицах 2 - 4.

Таблица 2 - Метрологические характеристики станций ГТИ

Номер канала	Наименование канала измерения станции ГТИ ¹⁾	Наименование характеристики Напряжение постоянного	Диапазон входного сигнала станции ГТИ от 0 до 5;	Пределы допускаемой приведенной $(\gamma)^{2)}$ или абсолютной (Δ) погрешности станции ГТИ
1	Канал измерения нагрузки на крюке	тока, В Сила постоянного тока, мА	от 0 до 3, от 0 до 10 от 4 до 20; от 0 до 20	$\gamma = \pm 1,25 \%$
2	Канал измерения давления бурового раствора	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\gamma = \pm 0.25 \%$
3	Канал измерения расхода бурового раствора на входе/выходе	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\gamma=\pm 2,5$ %
4	Канал измерения уровня бурового раствора	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\Delta=\pm0,\!005\;\mathrm{M}$
5	Канал измерения крутящего момента на роторе	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\gamma = \pm 2,5 \%$
6	Канал измерения плотности бурового раствора на входе/выходе	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\Delta = \pm 0,005$ Γ/cm^3
7	Канал измерения температуры бурового раствора	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	$\Delta = \pm 0.5$ °C

Продолжение таблицы 2

Продоли	ение таолицы 2			Продоли
Номер канала	Наименование характеристики	Диапазон входного сигнала станции ГТИ	Наименование канала измерения станции ГТИ ¹⁾	Пределы допускаемой приведенной (γ) ²⁾ или абсолютной (Δ) погрешности станции ГТИ
8	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	Канал измерения удельной электрической проводимости бурового раствора	γ = ±2,5 %
9	Напряжение постоянного тока, В Сила постоянного тока, мА	от 0 до 5; от 0 до 10 от 4 до 20; от 0 до 20	Канал измерения объектного газосодержания бурового раствора	γ = ±2,5 %
10	Апериодическая последовательность прямоугольных импульсов: - амплитуда импульса, В - длительность импульса, с	от 5 до 24 от 0,1 до 30	Канал измерения положения талевого блока	$\Delta=\pm0,\!005$ м
11	Апериодическая последовательность прямоугольных импульсов: - амплитуда импульса, В - длительность импульса, с	от 5 до 24 от 0,1 до 30	Канал измерения оборотов лебедки буровой установки	$\gamma = \pm 0,005$ %
12	Апериодическая последовательность прямоугольных импульсов: - амплитуда импульса, В - длительность импульса, с	от 5 до 24 от 0,1 до 30	Канал измерения числа ходов насоса в единицу времени	$\Delta=\pm0,5$ ход/мин
13	Апериодическая последовательность прямоугольных импульсов: - амплитуда импульса, В - длительность импульса, с	от 1,5 до 2 от 0,1 до 30	Канал измерения частоты вращения ротора	$\Delta=\pm0,5$ об/мин

Примечания

1) - Коэффициент масштабного преобразования для каждого канала измерения

станции ГТИ указан в паспорте; $^{2)}$ - Нормирующими значениями при определении допускаемой приведенной (γ) погрешности станции ГТИ являются верхние значения диапазонов контролируемых технологических параметров, указанных в таблице 3.

Таблица 3 - Диапазоны измерения физических величин

Tuoming 5 Anamasonisi namepennin quan reekim besin inii	
Наименование	Значение
Положение талевого блока, м	от 0 до 50
Обороты лебедки буровой установки, кГц	от 0 до 1
Нагрузка на крюке, кН	от 0 до 50
Паризина бурарого построро МПа	от 0 до 25; от 0 до 40;
Давление бурового раствора, МПа	от 0 до 100

Продолжение таблицы 3

Наименование	Значение
Число ходов насоса в единицу времени, ход/мин	от 0 до 200
Расход бурового раствора на входе/выходе, дм ³ /с	от 0 до 60
Уровень бурового раствора, м	от 0 до 2,5; от 0 до 6,0;
	от 0 до 10,0
Частота вращения ротора, об/мин	от 0 до 350
Крутящий момент на роторе, кН-м	от 0 до 60
Плотность бурового раствора на входе/выходе, г/см ³	от 0,8 до 2,5
Температура бурового раствора, °С	от 0 до +100
Удельная электрическая проводимость бурового раствора, См/м	от 0 до 25
Объемное газосодержание бурового раствора, % НКПР	от 0 до 100

Таблица 4 - Технические характеристики станций ГТИ

таолица 4 - Технические характеристики станции ГТИ		
Характеристика	Значение	
Параметры электрического питания:		
- напряжение переменного тока, В	220	
- частота переменного тока, Гц	50	
Потребляемая мощность, Вт, не более	1000	
Габаритные размеры, (длина×ширина×высота), мм, не более:		
- БАК	171×121×55	
- БИК	115×90×55	
- БОДОЛ	115×90×55	
- БДВ	115×90×55	
- БПС	200×280×60	
- БСГ	171×121×55	
Масса, кг, не более:		
- БАК	0,3	
- БИК	0,3	
- БОДОЛ	0,3	
- БДВ	0,3	
- БПС	0,3	
- БСГ	0,3	
Условия эксплуатации:		
- температура окружающей среды, °С	от -40 до + 55	
- относительная влажность при температуре 35 °C, %	до 95	
- атмосферное давление, кПа	от 95,3 до 104,9	
Средний срок службы, лет, не менее	3	
Средняя наработка на отказ, ч	90000	

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Комплект поставки представлен в таблице 5.

Таблица 5 - Комплектность

Наименование	Количество
Станция геолого-технологического контроля и оптимизации бурения ГЕОКОНТРОЛЬ	1 шт.
Комплект принадлежностей	1 компл.
Руководство по эксплуатации	1 экз.
Паспорт	1 экз.

Поверка

осуществляется по документу МИ 2539-99 «ГСИ. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Общие требования к методике поверки».

Основное средство поверки:

- калибратор универсальный 9100 (регистрационный номер в Федеральном информационном фонде № 25985-09).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений отсутствуют.

Нормативные и технические документы, устанавливающие требования к станциям геолого-технологического контроля и оптимизации бурения ГЕОКОНТРОЛЬ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 53375-2016 Скважины нефтяные и газовые. Геолого-технологические исследования. Общие требования

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные

ТУ 4315-001-55908181-2016 Станция геолого-технологического контроля и оптимизации бурения ГЕОКОНТРОЛЬ. Технические условия

Изготовитель

Общество с ограниченной ответственностью «ГЕОКОНТРОЛЬ» (ООО «ГЕОКОНТРОЛЬ») ИНН 6312042582

Адрес: 443028, Самарская область, г. Самара, ул. Винтовая, б/н

Телефон (факс): +7 (846) 996-22-68 Web-сайт: http://geocontrol.org E-mail: geocontrol.org

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии» (ООО «ИЦРМ»)

Адрес: 142700, Московская область, Ленинский район, г. Видное, Промзона тер. корп. 526

Телефон: (495) 278-02-48 Web-сайт: <u>www.ic-rm.ru</u> E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2017 г.