ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики-регистраторы ЭСКО-Терра М

Назначение средства измерений

Теплосчетчики-регистраторы ЭСКО-Терра М (далее – теплосчетчик) предназначены для измерений и регистрации: количества тепловой энергии, тепловой мощности, объемного и массового расхода (объема и массы) теплоносителя, температуры (теплоносителя, наружного воздуха), разности температур и избыточного давления теплоносителя в системах тепло- и водоснабжения.

Описание средства измерений

Теплосчетчик является измерительной системой вида ИС-1 по ГОСТ Р 8.596-2002 с функционально выделенными измерительными каналами (далее - ИК). В составе теплосчетчика реализованы простые (объемного расхода (объема); температуры теплоносителя; давления теплоносителя) и сложные (массы теплоносителя, разности температуры теплоносителя; количества теплоносителя; тепловой энергии; тепловой мощности) ИК.

Принцип работы теплосчетчиков состоит в измерении и преобразовании значений объемного расхода (объема) и параметров теплоносителя (температуры, разности температур и давления) с последующим расчетом количества теплоносителя, тепловой энергии и тепловой мощности, в соответствии с уравнениями измерений.

Теплосчетчики конструктивно состоят из:

- тепловычислителя 1 шт.;
- модуля аналоговых измерений (МАИ) от 0 до 6 шт.;
- средств измерений утвержденного типа (далее СИ) объемного расхода и/или объема с цифровыми (RS-485) и/или аналоговыми (частотные или числоимпульсные) выходными сигналами, в соответствии с таблицей 1 от 1 до 15 шт.;
- СИ температуры или разности температур с цифровыми (RS-485 по протоколу Modbus) и/или аналоговыми (сопротивление с HCX 100 Π , Pt100, 500 Π , 1000 Π , Pt1000) выходными сигналами, в соответствии с таблицей 2 от 0 до 12 шт. (от 0 до 6 комплектов);
- СИ избыточного давления с цифровыми (RS-485 по протоколу Modbus) и/или аналоговыми (сила постоянного тока) выходными сигналами, в соответствии с таблицей 3 от 0 до 12 шт.

Таблица 1 – СИ объемного расхода и/или объема

Наименование и тип СИ	Регистрационный номер ¹
1	2
Счётчики холодной воды и горячей воды СХВ (СХВ-15, СХВ-15Д, СХВ-20, СХВ-20Д), СГВ (СГВ-15, СГВ-15Д, СГВ-20, СГВ-20Д)	16078-13 ²
Преобразователи расхода электромагнитные ПРЭМ	17858-11
Счётчики холодной и горячей воды МТК/MNК/МТW Водоучет	19728-03 ²
Счетчики-расходомеры электромагнитные РМ-5	20699-11
Расходомеры-счетчики ультразвуковые «ВЗЛЕТ МР»	28363-14
Расходомеры-счетчики электромагнитные ЭСКО-РВ.08	28868-10
Счётчики холодной и горячей воды ВСХ, ВСХд, ВСГ, ВСГд, ВСТ	51794-12 ²
Расходомеры счетчики электромагнитные «ВЗЛЕТ ЭР» модификация «Лайт М»	52856-13
Счётчики воды многоструйные Пульсар М, Пульсар ММ	56351-14 ²

1	2
Счётчики холодной и горячей воды универсальные ETWI 15 ВИНДЭКС	60378-15 ²
Расходомеры УРЖ2КМ Модель 3	62890-15
Счётчики воды одноструйные Пульсар	63458-16 ²
Расходомеры-счетчики электромагнитные ПИТЕРФЛОУ	66324-16
Расходомеры-счётчики электромагнитные ЭСКО-Р	72089-18 ³

^{-1 -} регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений СИ.

Таблица 2 – СИ температуры и разности температур

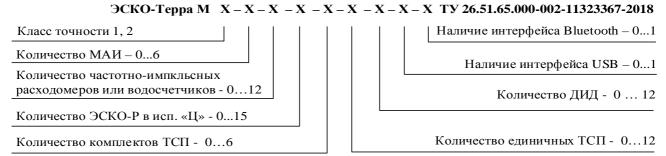
. Науманаранна и дип СИ	Регистрационный
Наименование и тип СИ	номер*
Термопреобразователи ИТ	17943-10
Комплекты термопреобразователей сопротивления КТСП-Н	38878-17
Термопреобразователи сопротивления платиновые ТСП-Н	38959-17
Комплекты термометров сопротивления из платины технически разностных КТПТР-04, КТПТР-05, КТПТР-05/1	39145-08
Термометры сопротивления ТЭМ-100	40592-09
Комплекты термометров сопротивления ТЭМ-110	40593-09
Комплекты термопреобразователей сопротивления платиновых КТС-Б	43096-15
Комплекты термометров сопротивления из платины технических разностных КТПТР-01, КТПТР-03, КТПТР-06, КТПТР-07, КТПТР-08	46156-10
Термопреобразователи сопротивления ТСМ 319М, ТСП 319П, ТСМ 320М, ТСП 320П, ТСМ 321М, ТСП 321П, ТСМ 322М, ТСП 322П, ТСМ 323М, ТСП 323П	60967-15
Термопреобразователи сопротивления ТС-Б	61801-15
Термопреобразователи сопротивления платиновые ТСП, ТСП-К	65539-16
Датчики температуры TOPAZ DT RS485	71866-18
* регистрационный номер в Федеральном информационном фонде по об измерений СИ	беспечению единства

Таблица 3 – СИ избыточного давления

Цаумонорочно	Регистрационный
Наименование	номер*
Преобразователи давления измерительные НТ	26817-17
Датчики давления ИД	26818-15
Преобразователи давления измерительные СДВ	28313-11
Преобразователи избыточного давления ПД-Р	40260-11
Датчики давления малогабаритные КОРУНД	47336-16
Датчики избыточного давления с электрическим выходным сигналом ДДМ-03Т-ДИ	55928-13
Преобразователи давления измерительные Сапфир-22МПС	66504-17
* регистрационный номер в Фелеральном информационном фонле по	обеспечению елинства

регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений СИ

^{2 –} применяются в системах водоснабжения.


³ – Могут комплектоваться двумя термопреобразователями сопротивления и двумя датчиками избыточного давления, соответственно измеренные значения объемного расхода, объема, температуры и давления формируются в цифровой (RS-485) выходной сигнал.

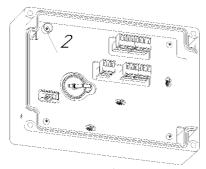
СИ входящие в состав теплосчетчиков обеспечивают измерение параметров теплоносителя (объемный расход, объем, температуру, разность температур, избыточное давление) и передачу результатов измерений в тепловычислитель (цифровые выходные сигналы) или МАИ (аналоговые и цифровые выходные сигналы) с помощью кабелей связи. Тепловычислитель и МАИ предназначены для приема, измерений и преобразований выходных сигналов от СИ в соответствующие физические величины, с последующим расчетом: объема, массы и разности температур теплоносителя, а также тепловой энергии (тепловой мощности) в соответствии с ГОСТ Р 51649-2014, ГОСТ Р ЕН 1434-1-2011, ГОСТ Р 8.728-2010, МИ 2412-97. Тепловычислитель также обеспечивает: ведение системного времени; архивирование и хранение полученных значений количественных и качественных параметров теплоносителя; передачу измерительной информации по цифровым интерфейсам связи.

Теплосчетчик осуществляет:

- измерение, индикацию и регистрацию (нарастающим итогом) объемного (массового) расхода теплоносителя в трубопроводах, $M^3/4$ (T/4);
- измерение, индикацию и регистрацию (нарастающим итогом) объема (массы) теплоносителя в трубопроводах, M^3 (т);
- измерение, индикацию и регистрацию температуры и/или разности температур в трубопроводах, ${}^{\circ}$ С;
 - вычисление, индикацию и регистрацию средневзвешенных значений температуры, °С;
 - измерение, индикацию и регистрацию избыточного давления, МПа;
- вычисление, индикацию и регистрацию средневзвешенных значений избыточного давления, МПа;
- вычисление, индикацию и регистрацию количества тепловой энергии (нарастающим итогом), Гкал;
- вычисление, индикацию и регистрацию тепловой мощности (мгновенные значения), Гкал/ч;
 - измерение, индикацию и регистрацию времени работы, ч;
 - регистрацию времени работы теплосчетчика в штатном и нештатном режимах, час;
- регистрацию во внутренней энергонезависимой памяти тепловычислителя измеренных и вычисленных значений;
- ведение архивов, глубина архива не менее: часового 60 суток, суточного 6 месяцев, месячного (итоговые значения) 36 месяцев;
- количество записей в нестираемом архиве диагностической информации (в том числе ведение архива изменения настроечных параметров), не менее 320;
 - передачу данных по цифровым интерфейсам связи.

Теплосчетчики выпускаются в исполнениях, которые отличаются количеством и типами входящих в их состав измерительных, комплексных и вычислительных компонент. Обозначение при заказе: Теплосчетчики-регистраторы

Общий вид теплосчетчика приведен на рисунке 1. С целью предотвращения несанкционированного доступа, тепловычислитель и МАИ, пломбируются в соответствии с рисунками 2 и 3: места нанесения пломб эксплуатирующей организации обозначены цифрой 1 на рисунке 2; места нанесения пломб поверителя обозначены цифрой 2 на рисунке 3. Пломбировки СИ входящих в состав теплосчетчика в соответствии с их технической и эксплуатационной документацией.



SCROTEPPA M

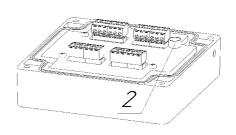

SCROT

Рисунок 1 – Общий вид теплосчетчика

Рисунок 2 – Места нанесения пломб изготовителя и/или эксплуатирующей организации

Тепловычислитель (тыльная сторона)

МАИ (тыльная сторона)

Рисунок 3 – Места нанесения пломб поверителя

Программное обеспечение

Программное обеспечение теплосчетчиков включает в свой состав (в зависимости от комплектности):

- программное обеспечение тепловычислителя (ПО ТВ);
- программное обеспечение МАИ (ПО МАИ);
- программное обеспечение СИ входящих в состав теплосчетчика (ПО СИ).

ПО ТВ и ПО МАИ устанавливаются (прошиваются) в энергонезависимую память при изготовлении, далее ограничение доступа обеспечивается пломбами, места нанесения которых приведены на рисунках 2 и 3. Конструкция теплосчетчиков исключает возможность несанкционированного влияния на ПО ТВ и ПО МАИ и измерительную информацию.

Нормирование метрологических характеристик теплосчетчик проведено с учетом влияния программного обеспечения.

Уровень защиты ПО ТВ и ПО МАИ и измерительной информации от преднамеренных и непреднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014. Идентификационные данные ПО ТВ и ПО МАИ приведены в таблицах 4 и 5, соответственно. Уровень защиты и идентификационные данные ПО СИ входящих в состав теплосчетчика в соответствии с их технической и эксплуатационной документацией.

Таблица 4 – Идентификационные данные ПО ТВ

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	ESCO_terra_m.hex
Номер версии (идентификационный номер)	не ниже 1.00
Цифровой идентификатор (контрольная сумма)	-

Таблица 5 – Идентификационные данные ПО МАИ

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	ESCO_m.hex
Номер версии (идентификационный номер)	не ниже 1.00
Цифровой идентификатор (контрольная сумма)	-

Метрологические и технические характеристики

Таблица 6 - Метрологические характеристики

Таблица 6 - Метрологические характеристики	
Наименование характеристики	Значение
1	2
Диаметры условного прохода DN ¹	от 4 до 1300
Диапазон измерений объемного расхода (объема) 1 , м 3 /ч	от 0,01 до 100000
Диапазон измерений частоты электрических сигналов, Гц	от 0 до 10000
Диапазон измерений температур 1 , $^{\circ}$ С	
- теплоносителя	от 0 до +150
- окружающей среды	от -50 до +130
Диапазон измерений электрического сопротивления	
(сигналы от термопреобразователей сопротивления по	
ГОСТ 6651-2009), Ом	
- Pt100 (α=0,00385 °C ⁻¹) (от -50 до +150 °C)	от 80,31 до 157,33
- Pt500 (α=0,00385 °C ⁻¹) (от -50 до +150 °C)	от 401,53 до 786,63
- Pt1000 (α=0,00385 °C ⁻¹) (от -50 до +150 °C)	от 803,06 до 1573,25
- 100 Π (α=0,00391 °C ⁻¹) (от -50 до +150 °C)	от 80,00 до 158,22
- 500 Π (α=0,00391 °C ⁻¹) (от -50 до +150 °C)	от 400 до 791,10
- 1000 П (α=0,00391 °C ⁻¹) (от -50 до +150 °C)	от 800,01 до 1582,21
Диапазон измерений разности температур ¹ , °C	от 2 до 148
Диапазон измерений избыточного давления ¹ , МПа	от 0 до 2,5
Диапазон измерений силы постоянного тока, мА	от 4 до 20
Пределы допускаемой относительной погрешности ИК	
объемного расхода (объема) воды и/или теплоносителя	
$(\delta_{\rm G})$, определяются по формуле ² , %	$\delta_{\rm G} = \pm \sqrt{\delta_{\rm CH(G)}^2 + \delta_{\rm MAH(G)}^2}$
- при этом для класса 2 ³	$\delta_{G} \le \pm (2+0.02 \cdot G_{\text{max}}/G) \le \pm 5$
- при этом для класса 1 ³	$\delta_{\rm G} \le \pm (1+0.01 \cdot G_{\rm max}/G) \le \pm 3.5$
Пределы допускаемой относительной погрешности	U - \
измерений частоты электрических сигналов и	
преобразования в значение физической величины	
$(\delta_{\text{MAM}(GI)})^4$, %	±0,06
X-7	-,
Пределы допускаемой погрешности измерений	
количества электрических сигналов (импульсов) и	
преобразований в значение физической величины	LO 01
$(\delta_{\text{МАИ(G2)}})^4$, % на 10000 импульсов	±0,01

продолжение таолицы о	2
	2
Пределы допускаемой относительной погрешности ИК	
массы теплоносителя ($\delta_{\rm M}$), определяются по формуле ⁵ , %	$\delta_{\rm M} = \pm \sqrt{\delta_{\rm G}^2 + \delta_{{\rm TB}(r)}^2}$
Пределы допускаемой абсолютной погрешности ИК	
температуры (D _t) определяются по формуле ⁶ , °C	$D_{t} = \pm (D_{CU(t)} + D_{MAU(t)})$
	· · · · · · · · · · · · · · · · · · ·
- при этом, не более	±(0,6+0,004· t)
Пределы допускаемой абсолютной погрешности измерений	
электрического сопротивления и преобразования в значение	
физической величины ($D_{\text{MAU(t)}}$) ⁴ , °C	±0,15
Пределы допускаемой относительной погрешности ИК	
разности температуры (δ_{D_t}), определяются по формуле ⁷ , %	$\delta_{D_{L}} = \pm \sqrt{\delta_{CH(D_{L})}^2 + \delta_{MAH(D_{L})}^2}$
- при этом, не более	•
	$\pm (0.5+3\cdot\Delta t_{\min}/\Delta t)$
Пределы допускаемой относительной погрешности	
измерений и вычислений разности температуры МАИ	
$(\delta_{\text{MAU(Dt)}}), \%$	$\pm (0.25 + \Delta t_{\min}/\Delta t)$
Пределы допускаемой приведенной к верхнему пределу	
измерений погрешности ИК избыточного давления	
определяются по формуле $(\gamma_P)^8$, %	$\gamma_{P} = \sqrt{{\gamma_{CU(P)}}^2 + {\gamma_{MAU(P)}}^2}$
- при этом, не более	$\gamma_{P} - \sqrt{\gamma_{CM(P)}} - \gamma_{MAM(P)}$
inpu stom, he conce	<u>+2</u>
Пределы допускаемой приведенной к верхнему	
диапазону измерений погрешности измерений и	
преобразований силы постоянного тока в значение	
физической величины $(\gamma_{\text{МАИ(P)}})^4$, %	±0,5
Пределы допускаемой относительной погрешности	
измерений и преобразований входных аналоговых	
сигналов от СИ входящих в состав теплосчетчика с	
последующим вычислением тепловой энергии (тепловой	
мощности), %	$\pm (0.5 + \Delta t_{\min}/\Delta t)$
Пределы допускаемой относительной погрешности	7-7mir —-/
измерений количества тепловой энергии в рабочих	
условиях, %	
- для закрытых систем теплоснабжения	
- для класса 1 ³	$\pm (2+4\cdot\Delta t_{min}/\Delta t+0,01\cdot G_{max}/G)$
- для класса 2 ³	$\pm (3+4\cdot\Delta t_{\min}/\Delta t+0.02\cdot G_{\max}/G)$
- для открытых систем теплоснабжения (в том числе	, - max - /
тупиковых), а также для циркуляционных и тупиковых	
систем водоснабжения	по ГОСТ Р 8.728-2010

1	2
Пределы допускаемой относительной погрешности	
измерения текущего времени, %	±0,05

- ¹ диаметр условного прохода и диапазоны измерений зависят от комплектации теплосчетчика, определяется метрологическими и техническими характеристиками СИ входящих в его состав и указывается в паспорте на теплосчетчик;
- 2 $\delta_{\text{СИ(G)}}$ пределы допускаемой относительной погрешности СИ объемного расхода и/или объема применяемого в составе теплосчетчика, в соответствии с описанием типа на данное СИ, %;
- $\delta_{\text{МАИ(G)}}$ пределы допускаемой относительной погрешности измерений и преобразований выходных аналоговых сигналов МАИ от СИ объемного расхода и/или объема (для СИ с частотным выходным сигналом подставляем $\delta_{\text{МАИ(G1)}}$; для СИ с импульсным выходным сигналом подставляем $\delta_{\text{МАИ(G2)}}$), %.
- 3 класс в соответствии с Приказом Минстроя России от 17.03.2014 № 99/пр, ГОСТ Р 51649-2014, ГОСТ Р ЕН 1434-1-2011, обозначение: G_{max} максимальное нормированное значение объемного расхода, M^3/Ψ ; G измеряемое значение объемного расхода, M^3/Ψ .
- 4 для СИ с цифровым выходным сигналом $\delta_{\text{МАИ(G)}},\ \mathsf{D}_{\text{МАИ(t)}},\ \gamma_{\text{МАИ(P)}}$ принимают равными нулю.
- 5 $\delta_{{\rm TB}(r)}$ пределы допускаемой относительной погрешности вычисления плотности тепловычислителем, $\pm 0,1$ %.
- 6 $D_{\text{CU(t)}}$ пределы допускаемой абсолютной погрешности СИ температуры применяемого в составе теплосчетчика, в соответствии с описанием типа на данное СИ, $^{\circ}$ С;
 - t измеряемая температура, °С.
- 7 $\delta_{\text{CU(Dt)}}$ пределы допускаемой относительной погрешности СИ разности температур применяемого в составе теплосчетчика, в соответствии с описанием типа на данное СИ, %;
- Δt_{min} минимальная разность температур, измеряемая теплосчетчиков, принимает значение 2 или 3 °C, определяется в соответствии с описанием типа СИ разности температур входящего в состав теплосчетчика;
 - Δt измеряемая разность температур, °C.
- 8 $\gamma_{\text{CU(P)}}$ пределы допускаемой приведенной погрешности СИ избыточного давления применяемого в составе теплосчетчика, в соответствии с описанием типа на данное СИ, %.

Таблица 7 – Основные технические характеристики

Наименование характеристики	Значение
1	2
Рабочие условия эксплуатации тепловычислителя и МАИ:	
- температура окружающего воздуха, °С	от +5 до +50
- относительная влажность воздуха, %	от 20 до 95
- атмосферное давление, кПа	от 61 до 106,7
Параметры электрического питания (напряжение постоянный ток), В:	
- тепловычислитель	от 20,4 до 27,6
- МАИ	от 20,4 до 27,6
- СИ	в соответствии с ОТ

1	2
Габаритные размеры (длина х ширина х высота), мм, не более	
- тепловычислитель	171x121x80
- МАИ	120x120x60
- СИ	в соответствии с ОТ
Потребляемая мощность, Вт, не более:	
- тепловычислитель	10
- МАИ	10
- СИ	в соответствии с ОТ
Масса, кг, не более	
- тепловычислитель	1
- МАИ	1
- СИ	в соответствии с ОТ
Класс защиты по ГОСТ 14254 -2015	
- тепловычислитель	IP65
- МАИ	IP65
- СИ	в соответствии с ОТ
Средний срок службы, лет	12
Средняя наработка на отказ, ч	110000

Знак утверждения типа

наносится на лицевую панель тепловычислителя и МАИ любым технологическим способом, обеспечивающим четкое изображение этого знака, его стойкость к внешним воздействующим факторам, а также сохраняемость, и на титульном листе руководства по эксплуатации и формуляра типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность теплосчетчика

Наименование	Обозначение	Количество
Теплосчетчики-регистраторы	ЭСКО-Терра М Х-Х-Х-Х-Х-Х-Х-Х-Х	1 шт.
Паспорт	26.51.65.000-002-11323367 ПС	1 экз.
Руководство по эксплуатации	26.51.65.000-002-11323367 РЭ	1 экз.
Методика поверки	26.51.65.000-002-11323367 МП	1 экз. на партию
Эксплуатационные документы на СИ входящие в состав теплосчетчика	-	1 экз.
* - Комплектность определяется договором на поставку.		

Поверка

осуществляется по документу 26.51.65.000-002-11323367 МП «ГСИ. Теплосчетчики-регистраторы ЭСКО-Терра М. Методика поверки», утвержденному ЗАО КИП «МЦЭ» и Φ ГУП «ВНИИМС» 19.11.2019 г.

Основные средства поверки

- калибратор электрических сигналов MC5-R, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 22237-08;
- мера электрического сопротивления многозначная MC3071, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 66932-17.
- частотомер электронно-счетный Ч3-63, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 9084-90.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на бланк свидетельства о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам-регистраторам ЭСКО-Терра М

Приказ Минстроя России от 17.03.2014 № 99/пр Об утверждении Методики осуществления коммерческого учета тепловой энергии, теплоносителя

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования

МИ 2412-97 ГСИ. Водяные системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя

МИ 2553-99 ГСИ. Энергия тепловая и теплоноситель в системах теплоснабжения. Методика оценивания погрешности измерений. Основные положения. Рекомендация

ТУ 26.51.65.000-002-11323367-2018 Теплосчетчики-регистраторы ЭСКО-Терра М. Технические условия

Изготовитель

Общество с ограниченной ответственностью «ЭСКО 3Э» (ООО «ЭСКО 3Э»)

ИНН 7733816402

Адрес: 125362, г. Москва, ул. Водников, д. 2, стр. 4, Б.1, А, К 16

Телефон: +7 (499) 929-82-35

E-mail: info@esco3e.ru

Заявитель

Акционерное общество «Энергосервисная компания 3Э» (АО «ЭСКО 3Э»)

ИНН 7714221760

Адрес: 125362, г. Москва, ул. Водников, д. 2, стр. 4, эт. 1, блок 1, офис 1

Телефон: +7 (499) 929-84-27 Web-сайт: <u>www.esco3e.ru</u> E-mail: info@esco3e.ru

Испытательные центры

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр. 8

Телефон/факс: +7 (495) 491-78-12 Web-сайт: <u>http://www.kip-mce.ru</u>

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 выдан 09 октября 2015 г.

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Телефон/факс: +7 (495) 437-55-77 / 437-56-66

Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2020 г.