Приложение к приказу Федерального агентства по техническому регулированию и метрологии от «22» октября 2020 г. № 1737

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ имеет двухуровневую структуру:

1-й уровень — измерительно-информационные комплексы точек измерений (далее - ИИК ТИ). Включает в себя измерительные трансформаторы напряжения (далее — ТН), измерительные трансформаторы тока (далее — ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее — счетчики), вторичные измерительные цепи;

2-й уровень – информационно-вычислительный комплекс АИИС КУЭ (далее – ИВК), включающий в себя: сервер сбора данных с установленным программным обеспечением (далее - ПО) ПК «Энергосфера 8.0» (далее – ССД), устройство синхронизации времени на базе контроллера ARIS-2803 (далее – УСВ), автоматизированные рабочие места (далее - APM), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

Принцип действия АИИС КУЭ основан на масштабном преобразовании параметров контролируемого присоединения (ток и напряжение) с использованием электромагнитных ТТ и ТН, измерении и интегрировании мгновенной мощности с использованием счетчиков электрической энергии, автоматическом сборе, хранении и передаче результатов измерений по каналам связи.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на измерительные входы счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой код. Реактивная мощность вычисляется из значений активной и полной мощности. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 минут.

Результаты измерений активной и реактивной мощности каждого направления преобразуются в частоту следования импульсов. Во внутренних регистрах счетчиков осуществляется накопление импульсов, соответствующих каждому виду и направлению передачи электроэнергии. По окончании интервала времени накопленное количество импульсов из каждого регистра переносится в долговременную энергонезависимую память с указанием времени измерений в шкале координированного времени UTC(SU).

Цифровой сигнал с выходов счетчиков, с использованием GSM/GPRS модемов, передается в ССД через сеть оператора мобильной связи.

Передача результатов измерений в виде цифрового сигнала с выходов счетчиков осуществляется с использованием GSM/GPRS-модемов по программируемому расписанию опроса ССД, но не реже 1 раза в сутки.

На ИВК осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН (в счетчиках коэффициенты трансформации выбраны равными 1), хранение измеренных данных коммерческого учета и журналов событий, формирование, оформление справочных и отчетных документов, передачу информации в формате ХМL-макетов в соответствии с регламентами ОРЭМ.

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы ССД, счетчиков и УСВ. УСВ получает шкалу времени UTC(SU) в постоянном режиме от спутниковых навигационных систем ГЛОНАСС/GPS с помощью модуля системы обеспечения единого времени, интегрированного с процессным модулем контроллера ARIS-2803. Синхронизация часов ССД с УСВ происходит при расхождении времени более чем на ±1 с. (параметр настраиваемый). Синхронизация часов счетчиков с ССД происходит не чаще 1 раза в сутки по следующему алгоритму: ССД определяет поправку часов счетчиков и, в случае, если она превышает ±3 с (параметр настраиваемый), то формирует команду на синхронизацию часов счетчика. Журналы событий счетчиков, ССД отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В ИВК используется программное обеспечение ПК «Энергосфера 8.0». Программное обеспечение имеет уровень защиты от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 — «средний». Идентификационные признаки метрологически значимой части ПО АИИС КУЭ приведены в таблице 1.

Таблица 1 – Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного обеспечения	pso_metr.dll
Номер версии (идентификационный номер) программного обеспечения	1.1.1.1
Цифровой идентификатор программного обеспечения	cbeb6f6ca69318bed976e08a2bb7814b
(рассчитываемый по алгоритму MD5)	(для 32-разрядного сервера опроса),
	6c38ccdd09ca8f92d6f96ac33d157a0e
	(для 64-разрядного сервера опроса)

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

№ ИК	Наименование ИК	TT	TH	Счетчик	УССВ/Серве
1	2	3	4	5	6
1	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 3 6 кВ, яч.56	ТРU 4 Кл.т. 0,5 Ктт = 1000/5 Рег. № 45424-10	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Per. № 48266- 11	Контроллер ARIS-2803 Рег. № 67864-17, FRONT Rack 437
2	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 4 6 кВ, яч.59	ТРU 4 Кл.т. 0,5 Ктт = 1000/5 Рег. № 45424-10	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Per. № 48266- 11	
3	ПС 220 кВ Фабрика №3, щитовая СН-0,23 кВ, ввод 0,23 кВ ТСН-2	Т-0,66 Кл.т. 0,5 Ктт = 75/5 Рег. № 17551-98	Не используется	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1 Рег. № 46634- 11	
4	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 1 6 кВ,яч.1а	ТРU 4 Кл.т. 0,5 Ктт = 1000/5 Рег. № 45424-10	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Per. № 48266- 11	V overno a vivon
5	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 2 6 кВ, яч.38а	ТРU 4 Кл.т. 0,5 Ктт = 1000/5 Рег. № 45424-10	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Рег. № 48266- 11	Контроллер ARIS-2803 Рег. № 67864- 17, FRONT Rack 437
6	ПС 220 кВ Фабрика №3, щитовая СН-0,23 кВ, ввод 0,23 кВ ТСН-1	Т-0,66 Кл.т. 0,5 Ктт = 75/5 Рег. № 17551-98	Не используется	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1 Рег. № 46634- 11	
7	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 4 6 кВ, яч.71	ТРU 4 Кл.т. 0,5 Ктт = 150/5 Рег. № 45424-10	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Per. № 48266- 11	
8	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 4 6 кВ, яч.68	ТРU 4 Кл.т. 0,5 Ктт = 200/5 Рег. № 17085-98	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Per. № 48266- 11	

Окончание таблицы 2

1	2	3	4	5	6
9	ПС 220 кВ Фабрика №3, ЗРУ-6 кВ, секция 1 6 кВ, яч.11	ТРU 4 Кл.т. 0,5 Ктт = 200/5 Рег. № 17085-98	ТЈР 4 Кл.т. 0,5 Ктн = 6000:√3/100:√3 Рег. № 45423-10	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1 Рег. № 48266- 11	Контроллер ARIS-2803 Рег. № 67864-17, FRONT Rack 437

Примечания:

1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2,при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

ИК №№	cos φ	$I_5 \le I$ изм $\le I_{20}$		$I_{20} \le I_{\text{ M3M}} < I_{100}$		I ₁₀₀ ≤ I _{изм} ≤I ₁₂₀	
NIK MAMA		$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{ m Wo}^{ m P}$ %
1, 2, 4, 5,	0,50	±5,5	±3,0	±3,0	±1,8	±2,3	±1,5
7, 8, 9	0,80	±3,0	±4,6	±1,7	±2,6	±1,4	±2,1
	0,87	±2,7	±5,6	±1,5	±3,1	±1,2	±2,4
	1,00	±1,8	-	±1,2	-	±1,0	-
3, 6	0,50	±5,4	±2,9	±2,7	±1,6	±1,9	±1,3
	0,80	±2,9	±4,5	±1,5	±2,4	±1,1	±1,8
	0,87	±2,6	±5,5	±1,3	±2,8	±1,0	±2,1
	1,00	±1,7	-	±1,0	-	±0,8	-

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

Twentigut : The if ever in results in a part of the interest passes in it just extend in a part of the interest in a part							
ИК №№	cos φ	$I_5 \le I_{изм} < I_{20}$		$I_{20} \le I_{изм} < I_{100}$		$I_{100} \le I_{изм} \le I_{120}$	
		$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{ m W}^{ m A}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %
1, 2, 4, 5,	0,50	±5,7	±4,0	±3,3	±3,2	±2,6	±3,1
7, 8, 9	0,80	±3,3	±5,3	±2,2	±3,7	±1,9	±3,4
	0,87	±3,0	±6,2	±2,0	±4,1	±1,8	±3,6
	1,00	±2,0	-	±1,4	-	±1,3	-
3, 6	0,50	±5,5	±3,9	±3,0	±3,1	±2,3	±3,0
	0,80	±3,2	±5,2	±2,0	±3,6	±1,8	±3,2
	0,87	±2,9	±6,1	±1,9	±3,9	±1,7	±3,4
	1,00	±1,9	-	±1,3	-	±1,1	-

Пределы допускаемого значения поправки часов, входящих в СОЕВ, относительно шкалы времени UTC(SU) ± 5 с

Окончание таблицы 4

ИК №№	222.0	I ₅ ≤ I _{изм} <i <sub="">20</i>		$I_{20} \le I_{изм} < I_{100}$		I ₁₀₀ ≤ I _{изм} ≤I ₁₂₀	
	cos φ	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{ m W}^{ m P}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{ m W}^{ m P}$ %

Примечание:

 I_2 – сила тока 2% относительно номинального тока TT;

 I_5 — сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} — сила тока 120% относительно номинального тока TT;

 $I_{\text{изм}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

δ_{Wo}^P – доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 $\delta_W{}^A$ — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество измерительных каналов	9
Нормальные условия:	
Tok, % ot I_{hom}	от 5 до 120
напряжение, % от U _{ном}	от 99 до 101
коэффициент мощности соѕ φ	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С:	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
Tok, % ot I_{hom}	от 5 до 120
напряжение, % от Uном	от 90 до 110
коэффициент мощности соѕ ф	0,5 инд 1,0 - 0,8
мпература окружающего воздуха, °С:	емк.
для ТТ и ТН	от -40 до +40
для счетчиков и ССД	от 0 до +40
для сервера	от +15 до +25
Период измерений активной и реактивной средней мощности и	30
приращений электрической энергии, минут	
Период сбора данных со счетчиков электрической энергии, минут	30
Формирование XML-файла для передачи внешним системам	Автоматическое
Формирование базы данных с указанием времени измерений и	Автоматическое
времени поступления результатов	
Глубина хранения информации	
Счетчики:	
тридцатиминутный профиль нагрузки в двух направлениях, сутки,	
не менее	100
Сервер ИВК:	
хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИВКЭ и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- счётчика, с фиксированием событий:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике.
- ИВК, с фиксированием событий:
- даты начала регистрации измерений;
- перерывы электропитания;
- программные и аппаратные перезапуски;
- установка и корректировка времени;
- переход на летнее/зимнее время;
- нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- счётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера сбора данных;
- защита информации на программном уровне:
- результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на ССД.

Знак утверждения типа

наносится на титульный лист формуляра 55181848.422222.393.4.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3). Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество,
		шт.
Трансформаторы тока	TPU 4	21
Трансформаторы тока	T-0,66	6
Трансформаторы напряжения	TJP 4	12
Счетчики	ПСЧ-4ТМ.05МК.04	2
Счетчики	Меркурий 234 ARTM-00 PB.G	7
Контроллер	ARIS 2803	1
Модем	GSM/GPRS	2
Сервер сбора данных	FRONT Rack 437 c ΠΟ	1
	ПК «Энергосфера 8.0»	

Наименование	Обозначение	Количество,
		шт.
Система автоматизированная	55181848.422222.393.4.ФО	1
информационно-измерительная		
коммерческого учета электроэнергии		
(АИИС КУЭ) АО «Вилюйская ГЭС-3»		
(Обогатительная Фабрика №3).		
Формуляр		
Система автоматизированная	МП-260-RA.RU.310556-2020	1
информационно-измерительная		
коммерческого учета электроэнергии		
(АИИС КУЭ) АО «Вилюйская ГЭС-3»		
(Обогатительная Фабрика №3).		
Методика поверки		

Поверка

осуществляется по документу МП-260-RA.RU.310556-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3). Методика поверки», утвержденному Западно-Сибирским филиалом ФГУП «ВНИИФТРИ» 10.09.2020 г.

Основные средства поверки:

- в соответствии с «Методикой выполнения измерений параметров вторичных цепей измерительных трансформаторов тока и напряжения», аттестованной ФГУП «СНИИМ» 24 апреля 2014 г. (регистрационный № ФР.1.34.2014.17814);
- устройство синхронизации частоты и времени Метроном версии 300 (Рег. № 56465-14);
- для поверки измерительных компонентов, входящих в состав АИИС КУЭ применяются средства поверки, указанные в методиках поверки, утвержденных при утверждении типа измерительных компонентов.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик АИИС КУЭ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3)» Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ». Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «Вилюйская ГЭС-3» (Обогатительная Фабрика №3)

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Вилюйская ГЭС-3» (АО «Вилюйская ГЭС-3»)

ИНН 1433015048

Адрес: 678196, Республика Саха (Якутия), Мирнинский район, п. Светлый, ул. Воропая, д. 22a

Телефон: +7 (41136) 79459 Факс: +7 (41136) 71322

Испытательный центр

Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4 Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от $14.01.2015 \, \Gamma$.