УТВЕРЖДЕНО приказом Федерального агентства по техническому регулированию и метрологии от «08» декабря 2023 г. № 2651

Регистрационный № 90688-23

Лист № 1 Всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры атомно-абсорбционные АА

Назначение средства измерений

Спектрометры атомно-абсорбционные AA (далее — спектрометры) предназначены для измерений содержания элементов в водных растворах, природных и сточных водах, в атмосферном воздухе, воздухе рабочей зоны и промышленных выбросах, почвах, геологических пробах, рудах и продуктах их переработки, металлах и их сплавах, огнеупорах, керамике, стеклах, продуктах питания, фармацевтических препаратах, нефти и нефтепродуктах, отработанных смазочных маслах и в других жидких и твёрдых веществах и материалах.

Описание средства измерений

Принцип действия спектрометров основан на измерении поглощения свободными атомами элементов резонансного излучения, проходящего через слой атомного пара, с последующим определением содержания целевых элементов при помощи градуировочных графиков.

Конструктивно спектрометры представляют собой модульные настольные приборы, состоящие из: системы ввода пробы, атомизатора, оптической системы, детектора и системы управления.

Ввод пробы в спектрометры осуществляется либо в ручном режиме, либо при помощи автосамплера (в зависимости от модели спектрометров и комплекта поставки). В зависимости от исполнения спектрометра атомизация проб проводится либо в пламенном, либо в электротермическом атомизаторах, либо с помощью гидридной приставки (при анализе ртути и гидридобразующих элементов). В пламенной горелке в зависимости от анализируемых элементов используется пламя «ацетилен - воздух» или «ацетилен - закись азота». Электротермический атомизатор обеспечивает атомизацию проб в инертной среде (аргон) при помощи нагрева графитовой кюветы в соответствии с температурной программой, заданной в программном обеспечении спектрометров. Оптическая система спектрометров состоит из монохроматора на основе дифракционной решетки. В качестве источника селективного излучения выступают лампы с полым катодом (поставляются по отдельному заказу). Лампы с полым катодом устанавливаются в револьверную головку с ручным или автоматическим переключением. Для коррекции фонового сигнала используется дейтериевая лампа и/или эффект Зеемана (только для модели АА-7090). Управление спектрометром осуществляется с помощью программного обеспечения, устанавливаемого на персональный компьютер.

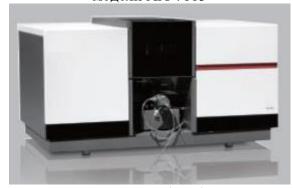
Спектрометры выпускаются в следующих моделях: AA-7090, AA-7050, AA-7020, AA-7003, AA-7001, которые отличаются степенью автоматизации системы управления спектрометрами, набором функциональных возможностей, а также метрологическими и техническими характеристиками.

Каждая модель спектрометра может быть представлена в различных исполнениях в зависимости от способа атомизации пробы: электротермический атомизатор (исполнение G), пламенный атомизатор (исполнение F), а также двумя атомизаторами — пламенным и электротермическим (исполнение без дополнительного обозначения).

Корпус спектрометров изготавливают из пластмассы и металлических сплавов, окрашиваемых в цвета в соответствии с технической документацией производителя.

Каждый экземпляр спектрометров имеет серийный номер, расположенный на табличке на задней стороне спектрометра. Серийный номер имеет цифровой или буквенно-цифровой формат и наносится типографским способом. Нанесение знака поверки на средство измерений не предусмотрено.

Общий вид спектрометров представлен на рисунке 1. Место нанесения серийного номера на спектрометры представлено на рисунке 2.


Спектрометр атомно-абсорбционный AA модели AA-7001


Спектрометр атомно-абсорбционный АА модели АА-7020

Спектрометр атомно-абсорбционный AA модели AA-7003

Спектрометр атомно-абсорбционный AA модели AA-7050

Спектрометр атомно-абсорбционный АА модели АА-7090

Рисунок 1 – Общий вид спектрометров атомно-абсорбционных АА

Место нанесения серийного номера

Рисунок 2 — Место нанесения серийного номера на спектрометры атомно-абсорбционные AA

Пломбирование спектрометров не предусмотрено. Конструкция спектрометров обеспечивает ограничение доступа к частям спектрометров, несущим первичную измерительную информацию, и местам настройки (регулировки).

К данному типу средств измерений относятся СИ, выпускаемые под товарным знаком «Rullab».

Программное обеспечение

Спектрометры оснащены программным обеспечением (далее $-\Pi O$), позволяющим осуществлять контроль процесса измерений, сбор экспериментальных данных, обрабатывать и сохранять полученные результаты.

Уровень защиты ПО спектрометров от непреднамеренных и преднамеренных изменений соответствует уровню «Средний» по Р 50.2.077-2014.

Идентификационные данные ПО спектрометров приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные	Значение для модели				
данные (признаки)	AA-7090	AA-7050	AA-7020	AA-7003	AA-7001
Идентификационное наименование ПО	AAPro	AAEW-50	AAEW-20	AAEW-20	AAEW-20
Номер версии ПО (идентификационный номер ПО), не ниже	V1.0.0.0 (3.0.1.50960)	V1.0 (2.5.8.60826)	V1.0 (2.2.7.50852)	V1.0 (2.2.7.50852)	V1.0 (2.2.7.50852)
Цифровой иденти- фикатор ПО			_		

Влияние программного обеспечения на метрологические характеристики спектрометров учтено при нормировании характеристик.

Метрологические и технические характеристики

Таблица 2 – Метрологические хара	ктеристики					
Наименование характеристики	Значение для модели					
ттаименование характеристики	AA-7090	AA-7050	AA-7020	AA-7003	AA-7001	
Характеристическая концентра-						
ция при пламенном способе ато-						
мизации пробы, мкг/дм ³ , не бо-						
лее:						
- кадмий (Cd, λ=228,8 нм)	35					
- медь (Cu, λ=324,8 нм)	50					
Характеристическая концентра-						
ция при электротермическом спо-						
собе атомизации пробы, мкг/дм 3 ,						
не более ¹⁾ :						
- кадмий (Cd, λ=228,8 нм)		0,04		0,10		
- медь (Cu, λ=324,8 нм)		0.40			0,50	
Предел обнаружения элементов						
(по критерию 3 σ) при пламенном						
способе атомизации пробы,						
мкг/дм ³ , не более:						
- кадмий (Cd, λ=228,8 нм)		7			20	
- медь (Cu, λ =324,8 нм)		8			10	
Предел обнаружения элементов				ı		
(по критерию 3о) при электро-						
термическом способе атомизации						
пробы, мкг/дм 3 , не более $^{1)}$:						
- кадмий (Cd, λ=228,8 нм)	0,1					
- медь (Cu, λ=324,8 нм)	0,3					
Предел допускаемого относи-						
тельного среднего квадратическо-						
го отклонения результатов изме-						
рений массовой концентрации						
элементов при пламенном спосо-						
бе атомизации, %:						
- медь (Cu, λ=324,8 нм)	3,0					
- кадмий (Cd, λ=228,8 нм)	3,0					
Предел допускаемого относи-						
тельного среднего квадратическо-						
го отклонения результатов изме-						
рений массовой концентрации						
элементов при электротермиче-						
ском способе атомизации, $\%^{1)}$:						
- медь (Cu, λ=324,8 нм)			3,0			
- кадмий (Cd, λ=228,8 нм)			3,0			
	_					
1) при объеме измеряемой пробы 20) MM ³					

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение для модели				
	AA-7090	AA-7050	AA-7020	AA-7003	AA-7001
Спектральный диапазон, нм	от 190 до 900				
Диапазон показаний оптической					
плотности, Б	от -2,0 до 2,0				
Ширина спектральной щели, нм	0,1; 0,2; 0,4; 1,0; 2,0				
Параметры электрического питания:					
- напряжение переменного тока, В	220±22				
- частота переменного тока, Гц	50/60				
Габаритные размеры, мм, не более:					
- высота	580	490		450	
- ширина	640	570		540	
- длина	1000	890		880	
Масса, кг, не более	150 125				
Условия эксплуатации:					
- температура воздуха, °С	от +10 до +35				
- относительная влажность, %	от 20 до 80				

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество	
Спектрометр атомно-абсорбционный	AA	1 шт.	
Гидридная приставка	_	1 шт.1)	
Автосамплер	_	1 шт. ¹⁾	
Персональный компьютер	ПК	1 шт. ¹⁾	
Программное обеспечение	ПО	1 шт.	
Руководство по эксплуатации	РЭ	1 экз.	
Руководство по программному обеспечению	_	1 экз.	
Методика поверки	_	1 экз.	
1) по заказу			

Сведения о методиках (методах) измерений

приведены в разделе 9 «Эксплуатация» руководств по эксплуатации «Спектрометры атомно-абсорбционные АА моделей АА-7001 и АА-7003. Руководство по эксплуатации», «Спектрометры атомно-абсорбционные АА модели АА-7050. Руководство по эксплуатации», «Спектрометры атомно-абсорбционные АА модели АА-7090. Руководство по эксплуатации», «Спектрометры атомно-абсорбционные АА модели АА-7020. Руководство по эксплуатации»

Применение спектрометров в сфере государственного регулирования обеспечения единства измерений осуществляется в соответствии с аттестованными методиками (методами) измерений.

Нормативные документы, устанавливающие требования к средству измерений

Приказ Росстандарта Российской Федерации от 19 февраля 2021 г. № 148 «Об утверждении Государственной поверочной схемы для средств измерений содержания неорганических компонентов в жидких и твердых веществах и материалах»;

Техническая документация SX TECHNOLOGIES, INC, Китай.

Правообладатель

SX TECHNOLOGIES, INC, Китай

Адрес: Second floor, 3# Shangyuan Road, Shilong Industry Development Zone, Men Tou Gou District, Beijing, China

Изготовитель

SX TECHNOLOGIES, INC, Китай

Адрес: Second floor, 3# Shangyuan Road, Shilong Industry Development Zone, Men Tou Gou District, Beijing, China

Испытательный центр

Уральский научно-исследовательский институт метрологии — филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии имени Д.И.Менделеева» (УНИИМ — филиал ФГУП «ВНИИМ им. Д.И.Менделеева»)

Адрес: 620075, г. Екатеринбург, ул. Красноармейская, д. 4

Уникальный номер записи в реестре аккредитованных лиц № RA.RU.311373.

